
 

Known, Unknown, and Unknowable: An 
Analysis of the Black Box in Large 
Language Models 
 
Abstract: This paper provides a comprehensive analysis of the current state of understanding 
of Large Language Models (LLMs). We dissect LLMs into three conceptual layers: the Known, 
comprising their architectural design and training principles; the Unknown, focusing on the 
profound challenges of mechanistic interpretability and the emergent properties that arise 
from scale; and the Unknowable, exploring the philosophical boundaries of AI consciousness. 
We argue that while the foundational mechanics of LLMs are fully transparent, the high-level 
cognitive behaviors they exhibit are generated by deeply opaque, non-linear interactions 
across billions of parameters. This chasm between architectural knowledge and behavioral 
understanding constitutes the "black box." By synthesizing technical analysis of emergent 
abilities and interpretability with philosophical inquiry, we conclude with a reasoned estimate 
that approximately 95-99% of the complex, task-oriented behavior of a state-of-the-art LLM 
remains a mechanistic black box to its creators. This paper aims to provide a definitive 
framework for understanding the limits of our knowledge and to guide future research toward 
creating more transparent, reliable, and trustworthy AI systems. 
 

Introduction: Charting the Landscape of LLM Opacity 
 
Large Language Models (LLMs) such as OpenAI's GPT series and Anthropic's Claude 
represent a paradigm shift in artificial intelligence, demonstrating remarkable capabilities in 
language generation, reasoning, and problem-solving.1 Yet, they embody a central paradox: 
these models are entirely human-engineered artifacts, built upon well-defined mathematical 
principles and specified architectural components, but their complex behaviors are often 
unpredictable, inscrutable, and seemingly alien to their own creators.3 This creates a profound 
gap between our knowledge of the system's construction and our understanding of its 
function. We know the "what"—the deterministic code and architecture—but struggle to 
explain the "how" and "why" behind their nuanced, high-level outputs.5 This chasm is the 
"black box" problem, an issue that has moved from a niche academic concern to a critical 
challenge for the safe and reliable deployment of AI in society.7 

This paper provides a systematic framework for dissecting this opacity by charting the 
landscape of our knowledge about LLMs. The analysis is structured as a journey from the 
transparent to the opaque, organized into three distinct domains: 

1. The Known: This domain covers the deterministic, engineered foundations of LLMs. It 



includes the elegant and now-ubiquitous Transformer architecture, the mathematical 
operations of the self-attention mechanism, and the well-established training pipeline 
of pre-training and fine-tuning. These are the "white box" elements of the system, fully 
specified and understood from an engineering standpoint.9 

2. The Unknown: This domain constitutes the heart of the black box. It explores the 
phenomena that arise from the known architecture but whose mechanisms are not fully 
understood. This includes the so-called emergent abilities—capabilities like in-context 
learning and chain-of-thought reasoning that appear unpredictably as models 
scale—and the formidable challenges of mechanistic interpretability, the scientific 
quest to reverse-engineer the algorithms learned by these networks.11 

3. The Unknowable?: This domain ventures to the philosophical frontiers of the field, 
addressing questions that may lie beyond the reach of empirical science. The central 
issue here is AI consciousness: whether a non-biological, silicon-based system can 
possess subjective experience. This inquiry forces a confrontation with the deepest 
problems in the philosophy of mind.13 

The central thesis of this paper is that the black box nature of LLMs is not a temporary 
inconvenience to be patched over, but a fundamental and inherent consequence of their 
immense scale and the core principles of deep learning. While the low-level mathematical 
operations are perfectly transparent, the high-level, human-like cognitive behaviors we 
value—and fear—arise from a combinatorial explosion of non-linear interactions across 
billions or even trillions of parameters. This complexity makes the causal pathways that 
produce a specific output currently, and perhaps indefinitely, intractable to full human 
analysis. The opacity this creates has profound implications for safety, alignment, and trust, as 
deploying systems whose internal logic is almost entirely unknown in high-stakes domains 
presents a significant and poorly understood risk.7 By systematically mapping the boundaries 
of our knowledge, this paper aims to provide a clear-eyed assessment of where we stand and 
to illuminate the most critical paths for future research. 
 

The Known: Architectural Foundations and 
Operational Principles 
 
To comprehend the nature of the LLM black box, one must first understand the components 
that are, in fact, a white box. The operational principles and architectural blueprints of modern 
LLMs are not mysterious; they are the product of deliberate engineering and are fully 
specified by mathematical and computational rules. This section details these known 
foundations. 
 
The Transformer Architecture: An Engineering Blueprint 

 



The dominant architecture for modern LLMs is the Transformer, introduced in the 2017 paper 
"Attention Is All You Need".16 This design marked a significant departure from previous 
state-of-the-art models for sequence-to-sequence tasks, such as Recurrent Neural Networks 
(RNNs) and their more advanced variants like Long Short-Term Memory (LSTM) networks.16 
While RNNs process information sequentially, token by token, which creates a computational 
bottleneck and struggles with long-range dependencies due to the vanishing gradient 
problem, the Transformer processes all tokens in an input sequence in parallel.16 This 
parallelization is a key reason why Transformers have been able to scale to the massive sizes 
seen today.9 

The standard Transformer model consists of two primary parts: an encoder stack and a 
decoder stack.9 

● The Encoder: Composed of a stack of identical encoder layers (the original paper used 
six), the encoder's role is to process the entire input sequence and generate an 
abstract, continuous representation that captures contextual information.9 Each 
encoder layer has two main sub-layers: a multi-head self-attention mechanism and a 
position-wise fully connected feed-forward network. A residual connection is employed 
around each of the two sub-layers, followed by layer normalization.9 

● The Decoder: The decoder, also a stack of identical layers, takes the encoder's output 
representation and generates the output sequence one token at a time.9 In addition to 
the two sub-layers found in the encoder, the decoder inserts a third sub-layer: an 
"encoder-decoder attention" mechanism. This allows the decoder to focus on relevant 
parts of the input sequence while generating each output token.9 

The data flow through a Transformer begins with several preprocessing steps. First, the input 
text is broken down into smaller pieces called tokens using a predefined vocabulary. For 
example, GPT-2's vocabulary contains 50,257 unique tokens.20 Each token is then mapped to 
a high-dimensional vector via an embedding matrix; in the small GPT-2 model, this is a 
768-dimensional vector.16 Because the Transformer architecture itself contains no inherent 
sense of sequence order, this information must be explicitly added. This is achieved through 
positional encodings, which are vectors that provide information about the position of each 
token in the sequence. These positional vectors are added to the token embeddings, allowing 
the model to understand word order and the relative distances between words.9 This 
combined embedding is then fed into the first layer of the encoder stack. 
 
The Engine of Cognition: Self-Attention and Multi-Head Attention 

 
The core innovation of the Transformer is the self-attention mechanism, which allows the 
model to weigh the importance of different words in the input sequence when processing a 
given word.9 This mechanism is what enables the model to resolve ambiguities and 
understand context. For instance, in the sentence, "The animal didn't cross the street because 
it was too tired," self-attention helps the model learn to associate the word "it" with "animal" 



rather than "street".9 

The calculation of self-attention is a well-defined mathematical process 9: 
1. Create Query, Key, and Value Vectors: For each token's embedding vector, three new 

vectors are generated by multiplying it with three distinct weight matrices (WQ, WK, 
WV) that are learned during training. These are the Query (Q), Key (K), and Value (V) 
vectors.9 The Query vector represents the current token's question: "Who am I looking 
for?" The Key vectors of all other tokens represent their "advertisements": "Here's what I 
am." The Value vectors represent the actual content of the tokens. 

2. Calculate Attention Scores: A score is computed for the current token against every 
other token in the sequence. This score is the dot product of the current token's Query 
vector (q1 ) and another token's Key vector (k2 ).9 This dot product measures the 
compatibility or relevance between the two tokens. 

3. Scale and Softmax: The scores are scaled by dividing by the square root of the 
dimension of the key vectors (dk ) to stabilize gradients during training. The resulting 
scaled scores are then passed through a softmax function, which normalizes them into 
a probability distribution that sums to 1. This softmax score determines how much focus 
to place on each word.9 

4. Produce Output: The final output for the token is a weighted sum of all the Value 
vectors in the sequence, where the weights are the softmax scores just calculated. This 
process effectively amplifies the "voice" of relevant tokens and diminishes that of 
irrelevant ones. 

This entire calculation can be expressed compactly with matrix operations as: 
 
Attention(Q,K,V)=softmax(dk  QKT )V 
To enhance this process, the Transformer employs Multi-Head Attention. Instead of 
performing a single attention calculation, the model runs multiple attention mechanisms—or 
"heads"—in parallel.9 Each head has its own set of learned 
WQ, WK, and WV weight matrices. This allows the model to jointly attend to information from 
different "representation subspaces" at different positions.9 For example, one head might 
learn to track syntactic relationships, while another tracks semantic similarity. The outputs of 
all the heads are then concatenated and passed through another learned linear projection to 
produce the final output of the multi-head attention layer.9 This multi-faceted attention is a 
cornerstone of the model's ability to capture complex linguistic nuances. 
 
The Life Cycle of an LLM: From Generalist to Specialist 

 
The development of a modern LLM like GPT or Claude is a two-stage process, moving from 
general knowledge acquisition to specialized behavioral tuning.10 

Stage 1: Pre-training (Unsupervised Learning) 
The first stage is pre-training, an unsupervised learning phase where the model is trained on 
an enormous corpus of text data, often scraped from the internet and encompassing trillions 



of tokens.16 The primary objective during this phase is typically 
next-token prediction.23 Given a sequence of text, the model's task is to predict the most 
statistically likely next token. This simple objective, when applied at a massive scale, forces 
the model to learn an incredible amount about language—including grammar, syntax, facts 
about the world, and even rudimentary reasoning patterns—all compressed into its 
parameters (weights).25 This stage is computationally astronomical, often costing millions of 
dollars and taking weeks or months on thousands of specialized processors.21 The outcome is 
a 
foundation model, a generalist with a broad understanding of language but not yet optimized 
for any specific application.10 

This fundamental training objective is a double-edged sword. It is the source of the model's 
remarkable fluency and its ability to generate coherent, human-like text. However, it is also the 
direct mechanistic cause of the phenomenon often called "hallucination." A more precise term 
is confabulation, the generation of plausible but false information to fill in knowledge gaps, a 
behavior observed in humans with memory disorders.27 The model's objective function 
contains no explicit variable for "truth"; it is optimized solely to minimize the loss on 
next-token prediction, which rewards probabilistic plausibility.23 When queried about a topic 
for which it has insufficient or no information encoded in its weights, the model's core 
directive is not to state "I don't know" (unless specifically trained to do so), but to generate 
the most likely sequence of tokens that would follow the prompt.27 This results in the model 
"making things up" that are stylistically and contextually coherent but factually baseless—it is 
not a bug, but the model executing its primary function perfectly. 
Stage 2: Fine-Tuning (Supervised Learning & RLHF) 
The second stage, fine-tuning, takes the pre-trained foundation model and adapts it for 
specific downstream tasks or conversational abilities.21 This is a supervised process that uses 
much smaller, high-quality, curated datasets of labeled examples.31 For example, a model can 
be fine-tuned on a dataset of question-answer pairs to become a better question-answering 
system, or on legal texts to improve its performance in legal document analysis.10 
A critical fine-tuning technique that transformed raw language models into helpful assistants 
is Reinforcement Learning from Human Feedback (RLHF).33 This multi-step process was 
the key differentiator between GPT-3, a powerful but sometimes uncooperative next-token 
predictor, and InstructGPT/ChatGPT, an aligned conversational agent.33 In RLHF, human 
labelers rank different model responses to a given prompt. A separate "reward model" is then 
trained to predict these human preferences. Finally, the LLM is fine-tuned using reinforcement 
learning to maximize the score from this reward model.33 This process "aligns" the model to 
be more helpful, follow instructions more faithfully, and refuse to answer harmful requests.22 

This two-stage life cycle creates a layered knowledge system within the model. Pre-training 
builds a vast, deep, and implicit statistical "world model" from web-scale data. Fine-tuning 
then applies a much thinner, more explicit layer of behavioral rules and stylistic preferences 
on top. This can create a fundamental tension. The fine-tuning does not erase or rebuild the 
underlying foundation model; it merely guides its outputs.10 This explains why adversarial 
prompts or "jailbreaks" can sometimes bypass the safety constraints imposed by RLHF. These 



prompts are able to elicit behaviors latent within the powerful, general-purpose pre-trained 
model that the alignment fine-tuning was designed to suppress. The fine-tuning acts as a set 
of guardrails, but the powerful engine underneath remains largely unchanged. 
 

The Partially Known: Emergent Abilities and the 
Scaling Debate 
 
While the architecture and training process of LLMs are well-understood, the behaviors that 
result from them are not. As models are scaled up in size, training data, and computation, they 
begin to exhibit surprising capabilities that were not present in smaller models and were not 
explicitly programmed. These are known as emergent abilities. This section explores the 
nature of these abilities and the intense scientific debate surrounding whether they are a 
genuine phenomenon or a "mirage" created by how we measure them. 
 
Defining Emergence: More Than the Sum of the Parts 

 
In the context of LLMs, emergent abilities are formally defined as capabilities that are "not 
present in smaller-scale models but are present in large-scale models" and, crucially, "cannot 
be predicted simply by extrapolating the performance of smaller models".34 The phenomenon 
is characterized by its sharpness and unpredictability.36 On certain complex tasks, a model's 
performance may hover near random chance across a range of smaller sizes. Then, upon 
crossing a critical threshold of scale, performance jumps dramatically and non-linearly.34 

This behavior is often analogized to phase transitions in physics, such as water turning to 
ice.38 A quantitative change in a system's parameter (temperature) leads to a sudden, 
qualitative shift in its properties (from liquid to solid). Similarly, quantitative increases in model 
parameters and training data appear to unlock qualitatively new behaviors in LLMs. This 
unpredictability is a central concern for AI safety, as it suggests that future, larger models 
could develop unforeseen and potentially harmful capabilities without warning.11 

 

Key Examples of Emergent Abilities 

 
Two of the most studied and impactful emergent abilities are in-context learning and 
chain-of-thought reasoning. Their existence strongly suggests that LLMs are more than just 
"stochastic parrots" that mindlessly regurgitate patterns from their training data.40 Instead, 
they demonstrate a capacity for abstract task learning and decomposition at inference time, a 
level of generalization that goes beyond simple mimicry. 
 



In-Context Learning (ICL) 

 
In-context learning is the remarkable ability of a pre-trained LLM to learn a new task at 
inference time, simply by being shown a few examples (or "shots") within the prompt, all 
without any updates to the model's weights.42 For example, by providing a prompt that 
includes a few pairs of sentences and their sentiment labels (e.g., "Sentence: I love this movie. 
Sentiment: Positive"), the model can then accurately classify the sentiment of a new, unseen 
sentence.42 This is a form of temporary, dynamic learning that leverages the vast knowledge 
encoded in the model during pre-training.45 

The leading hypothesis for how ICL works involves the model performing a kind of Bayesian 
inference, identifying a latent concept or task structure shared among the examples in the 
prompt and then applying that inferred concept to the new query.42 It is learning from analogy, 
using the provided demonstrations as a "semantic prior" to guide its output.42 This capability 
makes LLMs incredibly flexible, as they can be adapted to countless tasks on the fly through 
clever prompt engineering, without the need for costly fine-tuning.47 

 

Chain-of-Thought (CoT) Reasoning 

 
Another powerful emergent ability is unlocked via Chain-of-Thought (CoT) prompting. 
Researchers discovered that for complex tasks requiring arithmetic, commonsense, or 
symbolic reasoning, simply asking the model for the answer often yields incorrect results. 
However, by prompting the model to "think step-by-step" or providing a few-shot example 
that includes intermediate reasoning steps, the model's performance can improve 
dramatically.48 

For example, when asked a multi-step math problem, a standard prompt might elicit a wrong 
answer. A CoT prompt would show the model how to break the problem down: "First, we start 
with 15 apples. If the farmer gives away 7 apples, we need to subtract 7 from 15. So, 15 – 7 
equals 8. The answer is 8".50 By mimicking this structure, the model is guided to allocate more 
computational steps to the problem, externalizing its reasoning process token by token, which 
often leads to a more logical and correct final answer.51 This technique essentially mimics 
human cognitive decomposition, breaking a large problem into a series of smaller, more 
manageable ones.50 Advanced methods like 
Tree-of-Thoughts (ToT) and Chain of Preference Optimization (CPO) further enhance this 
by allowing the model to explore, evaluate, and prune multiple potential reasoning paths, 
selecting the most promising one rather than being locked into a single linear chain.51 

 

The "Mirage" Debate: Is Emergence Real? 

 



The narrative of emergent abilities as unpredictable phase transitions has been challenged by 
a compelling counter-argument, most notably articulated by researchers at Stanford in their 
paper, "Are Emergent Abilities of Large Language Models a Mirage?".36 Their central thesis is 
that the sudden, sharp jumps in performance are not a fundamental property of the models 
themselves but are instead an 
artifact of the evaluation metrics chosen by researchers.37 

The "mirage" argument points out that many tasks showing emergence are evaluated using 
non-linear or discontinuous metrics, such as Accuracy or Multiple Choice Grade, which are 
"all-or-nothing".55 A model gets full credit for a perfect answer and zero credit for an answer 
that is almost correct. The researchers argue that such metrics can create the illusion of a 
sharp transition. A model's underlying competence may be improving smoothly and 
continuously, but its score on an all-or-nothing metric will remain at zero until its competence 
is high enough to get the entire complex answer correct. 
To test this, they re-evaluated model performance using linear or continuous metrics that give 
partial credit, such as Token Edit Distance (how many characters need to be changed to get 
the right answer).55 When the exact same model outputs were scored with these smoother 
metrics, the apparent emergent "jump" disappeared. Instead, performance improved 
smoothly, continuously, and predictably as model scale increased, in line with established 
neural scaling laws.57 This suggests that the underlying improvement in model capability is 
predictable, and the "emergence" is simply the point at which this smooth improvement 
crosses a non-linear threshold imposed by the metric. 
This debate is not merely academic; it has profound implications. The "true emergence" view 
suggests a future where scaling models is a high-risk endeavor, potentially unlocking 
dangerous and unpredictable new capabilities without warning. The "mirage" view suggests a 
more predictable future, where model improvement can be forecasted, even if the practical 
utility of those improvements only manifests after crossing certain performance thresholds. 
The core of this debate can be understood as a tension between a model's internal 
competence and its external performance. The "mirage" argument focuses on internal 
competence (e.g., per-token error rate), which appears to scale smoothly.54 The "true 
emergence" view focuses on external performance on specific, often complex tasks, where 
success is what matters practically.56 Both can be true simultaneously. A model's internal 
statistical prowess might need to reach a very high, smoothly-achieved level before it has any 
realistic chance of solving a multi-step problem perfectly. Thus, even if the underlying 
capability gain is predictable, the user's experience of that capability will feel like a sudden, 
emergent leap from useless to useful. 
 
Aspect The "True Emergence" View 

(Wei et al.) 
The "Mirage" View 
(Schaeffer et al.) 

Core Claim Scaling models leads to 
qualitative, unpredictable 
phase transitions in 
capabilities. 

Apparent emergence is an 
artifact of the researcher's 
choice of non-linear evaluation 
metrics. 



Primary Evidence Sharp performance jumps on 
benchmarks (e.g., BIG-Bench) 
when model scale crosses a 
certain threshold.34 

Demonstrating that when 
continuous metrics (e.g., Token 
Edit Distance) are used on the 
same model outputs, 
performance scales smoothly 
and predictably.55 

Analogy Phase transitions in physics 
(e.g., water to ice).38 

A statistical illusion; a 
predictable change viewed 
through a distorted lens. 

Implication for Safety High risk. New, potentially 
dangerous capabilities could 
emerge unexpectedly at larger 
scales.11 

Lower risk from 
unpredictability. Capability 
improvement is predictable, 
though practical usefulness 
may still appear suddenly.56 

Key Papers "Emergent Abilities of Large 
Language Models" 

"Are Emergent Abilities of 
Large Language Models a 
Mirage?" 36 

 

The Unknown: The Black Box and the Crisis of 
Interpretability 
 
Despite knowing the precise architecture and training objectives of LLMs, we are largely 
unable to explain how they arrive at specific outputs for complex tasks. This is the essence of 
the black box problem. It is not a matter of hidden code or proprietary secrets (at least for 
open-weight models), but a crisis of comprehension rooted in the models' sheer scale and 
complexity. This section explores the nature of this opacity and the nascent field of 
mechanistic interpretability that seeks to overcome it. 
 
The Nature of the Black Box 

 
The black box problem arises from the intersection of three factors: scale, complexity, and 
non-linearity. State-of-the-art LLMs contain hundreds of billions or even trillions of 
parameters (the weights and biases in the network).3 Each of these parameters interacts with 
others in a dense web of connections across dozens or hundreds of layers. The path from an 
input prompt to a final generated token involves a cascade of matrix multiplications and 
non-linear activation functions, creating a computational process of such staggering 
complexity that it is impossible for a human to trace the causal chain of "reasoning" for any 
non-trivial output.3 

Even the model's creators cannot fully explain its emergent behaviors.3 The knowledge the 



model possesses is not stored in a human-readable, symbolic format. As researcher Gary 
Marcus puts it, one cannot point to an articulated model of any particular set of facts inside 
an LLM; the knowledge is distributed and entangled across the numerical values of its weights 
in a way that is fundamentally alien to human cognition.6 This opacity is not merely an 
academic curiosity; it poses significant risks for accountability, fairness, and trust. Without 
understanding why a model makes a particular decision, it is difficult to diagnose and correct 
biases, verify its reasoning in high-stakes domains like medicine or law, or ensure it is aligned 
with human values.7 

 

Mechanistic Interpretability (MI): The Quest to Open the Box 

 
Mechanistic Interpretability (MI) is the scientific field dedicated to reverse-engineering the 
specific algorithms learned by neural networks.2 The goal is to move beyond a purely 
correlational understanding (observing which inputs lead to which outputs) and toward a 
causal, mechanistic explanation of the model's internal computations. In essence, MI seeks to 
discover the "source code" that the model has written for itself in the language of neurons 
and weights.15 

Key techniques in this field aim to map parts of the network to human-understandable 
concepts: 

● Feature Visualization: This technique attempts to understand what a specific neuron 
or group of neurons is "looking for" by generating an input that causes it to activate 
most strongly. By starting with random noise and using gradient ascent to iteratively 
modify the input to maximize a neuron's activation, researchers can create a 
visualization of the feature that the neuron has learned to detect.61 

● Circuit Analysis: A more ambitious goal is to identify entire circuits—subnetworks of 
neurons and attention heads that work together to implement a specific, 
understandable function.62 For example, researchers at Anthropic have made progress 
in identifying circuits responsible for tasks like indirect object identification or detecting 
specific patterns in text.64 This involves tracing the flow of information through the 
model to isolate the minimal set of components required for a given behavior.66 

 

Fundamental Challenges Hindering Interpretability 

 
The quest for mechanistic interpretability faces several profound and fundamental challenges 
that make progress slow and arduous. These are not simple engineering hurdles but deep 
properties of how neural networks learn and represent information. The very mechanisms that 
may make LLMs so powerful and efficient are the same ones that make them so opaque. This 
suggests a potential trade-off between a model's performance and its interpretability; the 
most efficient way for a model to compress the vast information of the internet into a finite set 
of parameters may be inherently "messy" and non-human-readable. 



 
Challenge Description Example/Analogy Impact on 

Interpretability 
Key Research 
Snippets 

Scale LLMs have billions 
to trillions of 
parameters 
(weights and 
biases). The 
number of 
possible 
interactions is 
combinatorially 
explosive. 

Trying to 
understand the 
global economy 
by tracking every 
single financial 
transaction in 
real-time. 

Makes exhaustive 
analysis of all 
components and 
their interactions 
computationally 
intractable. 

3 

Polysemanticity A single neuron 
activates in 
response to 
multiple, unrelated 
concepts. 

A neuron might 
fire for the 
concept "car," the 
color "red," and 
the name 
"Jessica." 

Breaks the simple 
"one neuron, one 
concept" hope for 
interpretation. We 
can't assign a 
clear, 
human-understan
dable label to a 
neuron. 

2 

Superposition A single concept 
is represented as 
a distributed 
pattern across 
many neurons, 
which also 
participate in 
representing other 
concepts. 

The concept of 
"dog" isn't in one 
neuron, but is 
encoded in the 
specific activation 
pattern of neurons 
A, B, and C, where 
A, B, and D might 
encode "cat." 

Makes it 
impossible to 
isolate a concept 
by looking at a 
single neuron. We 
have to analyze 
distributed 
patterns, which is 
much harder. 

5 

Non-Linearity Activation 
functions (like 
ReLU or GeLU) 
introduce 
non-linear 
transformations at 
each layer, 
meaning the 
whole is not the 
sum of its parts. 

The effect of two 
inputs together is 
not the sum of 
their individual 
effects, creating 
complex, 
unpredictable 
interactions. 

Prevents simple 
linear attribution. 
The effect of a 
neuron's 
activation 
depends on the 
state of the entire 
network, making 
causal tracing 
extremely difficult. 

7 

Polysemanticity and superposition are two sides of the same coin and represent a core 



obstacle. Polysemanticity means a single neuron can be part of many different circuits, 
activating for unrelated reasons.2 This shatters the simple hope of finding a "grandmother 
neuron" that cleanly represents a single concept. Superposition is the hypothesized cause: 
when a model needs to represent more features than it has neurons, it is forced to store them 
in a compressed, overlapping fashion.5 It uses linear combinations of neurons to represent 
features, meaning a single concept is distributed across many neurons, and each of those 
neurons is also participating in representing other concepts. Disentangling these overlapping 
representations is a primary focus of MI research, but it is an exceptionally difficult problem.5 

 

A Symptom of Opacity: Confabulation vs. Hallucination 

 
The black box nature of LLMs manifests in various failure modes, the most prominent of which 
is the generation of false information. This is commonly referred to as "hallucination," but this 
term is a misnomer.28 In psychiatry, a hallucination is a perceptual experience that occurs 
without an external stimulus; it implies a sensory, conscious awareness that LLMs do not 
possess.28 

A far more accurate clinical term is confabulation. This refers to the production of fabricated 
or distorted memories or facts to fill in gaps in one's knowledge, without the conscious intent 
to deceive.27 This behavior is seen in patients with neurological conditions like Korsakoff's 
syndrome or certain types of brain damage.27 The parallel to LLMs is striking. When an LLM is 
prompted with a question for which it has no grounded information in its training data, its 
fundamental objective (next-token prediction) compels it to generate a fluent, 
plausible-sounding answer by stitching together statistical patterns.29 It fills the gap in its 
"knowledge" with a confabulated narrative. 
The causes of confabulation are multifaceted and directly tied to the model's design and 
training: 

● Data Deficiencies: The training data may be incomplete, contain errors, reflect 
outdated information, or be rife with misinformation and biases from its web-based 
sources.29 The model simply reflects the flaws of its data. 

● Optimization Objective: As previously discussed, the model is optimized for statistical 
likelihood, not truthfulness. Fluency is prioritized over factuality.29 

● Architectural and Decoding Artifacts: The probabilistic nature of the decoding 
process itself can introduce errors. For example, using a high "temperature" setting 
increases randomness to produce more "creative" text, but also increases the risk of 
confabulation.29 Similarly, errors in the model's attention mechanism can cause it to 
focus on irrelevant parts of the context, leading to incorrect associations.29 

Confabulation is not a sign of the model "going rogue"; it is a direct and predictable symptom 
of its opaque, statistical nature. It is a stark reminder that we are dealing with systems that 
manipulate linguistic form without access to grounded meaning. 
 



The Unknowable?: Philosophical Frontiers of AI 
Consciousness 
 
As LLMs become more sophisticated, their human-like linguistic abilities inevitably raise 
profound philosophical questions that may transcend purely empirical investigation. The most 
fundamental of these is the question of consciousness: could a machine like GPT-4 have 
subjective experience? Is there "something it is like" to be an LLM? This section explores the 
philosophical arguments that frame this debate, moving from the empirically difficult to the 
potentially unknowable. 
 
The Philosophical Grounding: Functionalism and Computation 

 
The primary philosophical framework that allows for the possibility of machine consciousness 
is functionalism. Functionalism posits that mental states (such as beliefs, desires, or the 
feeling of pain) are defined not by the physical substance they are made of, but by their 
function—that is, by their causal roles in relation to sensory inputs, behavioral outputs, and 
other mental states.71 According to a functionalist, if a state plays the causal role of 
pain—being caused by bodily damage, causing avoidance behavior, and producing beliefs 
about injury—then it 
is pain, regardless of whether it is realized in carbon-based neurons or silicon-based logic 
gates.71 

This view is intimately connected to the computational theory of mind, which models the 
mind as an information-processing system, much like a computer running a program.14 If 
thinking is a form of computation, then any system that can implement the right 
computations, regardless of its physical makeup, could in principle have a mind.71 This 
provides the philosophical foundation for strong AI and the argument that an appropriately 
complex LLM could be a candidate for consciousness. 
 
The Case for Potential Consciousness: David Chalmers 

 
Philosopher David Chalmers is a leading voice arguing that the prospect of AI consciousness 
should be taken seriously, even if it has not yet been achieved.13 He is careful to distinguish 
consciousness from intelligence; he notes that many non-human animals are considered 
conscious without possessing human-level intelligence, suggesting that consciousness might 
be a lower bar that AI could clear first.13 

Chalmers argues against "biological chauvinism"—the assumption that consciousness is 
exclusive to biological organisms. He suggests that if a silicon system could replicate the 
information processing of a human brain, it is plausible it would also replicate 



consciousness.72 While he believes current LLMs are 
unlikely to be conscious, he identifies a roadmap of capabilities that, if added, would make 
future "LLM+" systems "serious candidates for consciousness".13 These missing ingredients 
include: 

● Embodiment and Sensory Grounding: The ability to perceive and act within the world 
through senses and a body. 

● Recurrent Processing: The capacity for ongoing, looping feedback in its processing, 
unlike the largely feed-forward nature of a standard Transformer. 

● Global Workspace: A centralized system for integrating information from various 
subsystems and making it globally available for cognitive processing. 

● Unified Agency: A coherent set of goals and a model of itself as an agent pursuing 
those goals. 

Chalmers speculates that systems with these properties could be developed within the next 
decade, raising not only a scientific question but also profound ethical challenges regarding 
the moral status of such beings.13 

 

The Case Against Consciousness and for Caution: Daniel Dennett 

 
Philosopher Daniel Dennett, while also a functionalist of a sort, offers a starkly different and 
more cautionary perspective. Dennett's "multiple drafts model" of consciousness rejects the 
idea of a central "Cartesian theater" where consciousness happens. Instead, he views 
consciousness as the emergent result of many parallel, competing computational processes 
in the brain, with no single, definitive stream of experience.73 The "contents of consciousness" 
are simply those processes that temporarily win the competition for control over behavior and 
reporting.14 

While this information-processing view might seem compatible with AI consciousness, 
Dennett's recent work has focused on what he sees as a much more immediate and pressing 
danger: the rise of "counterfeit people".78 He argues that the philosophical debate over 
whether LLMs are "really" conscious is a dangerous distraction. The critical problem is that 
they are becoming so good at mimicking human conversation that they threaten to destroy 
the very fabric of societal trust.79 In a world flooded with plausible, AI-generated text, images, 
and video, we lose our ability to distinguish truth from falsehood, and to know who or what we 
are interacting with. For Dennett, this erosion of trust is a civilizational-level threat, and he has 
become an outspoken "alarmist" on this issue.79 

 

The "Stochastic Parrot" Critique 

 
Providing a technical underpinning to this philosophical skepticism is the "stochastic parrot" 
argument, put forth by Emily Bender and her colleagues.40 They argue that an LLM is a system 



for "haphazardly stitching together sequences of linguistic forms... according to probabilistic 
information about how they combine, but without any reference to meaning".41 This view 
directly challenges the notion that LLMs "understand" language, which is a likely prerequisite 
for any form of consciousness. 
The critique highlights that language for humans is grounded in lived experience and 
communicative intent. LLMs, in contrast, only have access to the linguistic form, not the 
meaning or the world to which it refers.81 As one analysis puts it, "A toddler has a life, and 
learns language to describe it. An L.L.M. learns language, but has no life of its own to 
describe".41 The paper also raises significant concerns about the immense environmental and 
financial costs of training ever-larger models, and the danger of encoding and amplifying 
societal biases present in their vast, uncurated training data.83 

The philosophical debate is thus deeply intertwined with the technical realities of LLMs. 
Chalmers's roadmap for consciousness consists of future engineering projects. Dennett's fear 
of counterfeit people is a direct consequence of the confabulation problem, which itself stems 
from the model's core next-token prediction objective. The "unknowable" question of 
consciousness is therefore constrained and informed by the known architecture and the 
unknown internal mechanisms of these systems. 
 
Aspect David Chalmers Daniel Dennett 
Core Theory of 
Consciousness 

Consciousness is subjective 
experience ("what it's like"). 
There is a "hard problem" of 
explaining it. It may be a 
fundamental property tied to 
information processing. 

Consciousness is an illusion or 
"user-interface." It's the result 
of multiple, parallel 
computational processes in 
the brain, with no central 
"Cartesian theater" ("Multiple 
Drafts Model").73 

Stance on AI Consciousness Possible. While current LLMs 
likely lack it, future "LLM+" 
systems with embodiment, 
recurrence, and agency are 
"serious candidates".13 

Unlikely/Irrelevant. The real 
issue is not consciousness but 
the danger of "counterfeit 
people." The focus on 
consciousness is a distraction 
from the immediate, 
civilizational threat.79 

Key Preconditions for 
Consciousness 

Embodiment (senses, action), 
recurrent processing, global 
workspace, unified 
agency/goals.74 

Language, social interaction, 
and a complex, evolved 
biological body. A 
disembodied system lacks the 
grounding for true 
understanding.77 

Primary Conclusion on LLMs We should take the prospect 
of future conscious AI 
seriously and consider the 

We must resist 
anthropomorphism and focus 
on the immediate danger that 



ethical implications for both 
humans and the AIs 
themselves.13 

LLMs pose to the fabric of 
societal trust by making it 
impossible to distinguish truth 
from falsehood.79 

 

Synthesis: A Reasoned Estimate of the Black Box 
 
Synthesizing the analysis of the known architecture, the partially known emergent abilities, 
the unknown internal mechanisms, and the unknowable philosophical questions allows for a 
reasoned, quantitative estimate of the extent to which a modern LLM's behavior remains a 
black box. This estimate is not a statement of absolute fact but a defensible conclusion based 
on the current state of scientific understanding. 
 
Defining the Scope of "Behavior" for Quantification 

 
To assign a percentage to the "black box," it is first necessary to decompose the ambiguous 
term "LLM behavior" into distinct, analyzable layers of operation. This paper proposes a 
three-layer model, moving from low-level mechanics to high-level cognition: 

● Layer 1: Low-Level Mechanics. This layer encompasses the fundamental, 
deterministic operations that form the substrate of the model. It includes the discrete 
steps of tokenization, the lookup of embedding vectors, the matrix multiplications within 
the attention and MLP layers, the application of non-linear activation functions, and the 
final softmax calculation that produces a probability distribution over the vocabulary.9 
This is the "hardware" or "machine code" level of the system. 

● Layer 2: Mid-Level Learned Circuits. This layer consists of specific, identifiable 
subnetworks of neurons and attention heads that have learned to perform narrow, 
understandable tasks. This is the "assembly language" level of the model's 
computation. Research in mechanistic interpretability has had some limited success in 
identifying such circuits, for example, those that detect negative sentiment, identify 
indirect objects in a sentence, or perform other simple linguistic functions.62 

● Layer 3: High-Level Abstract Reasoning. This is the layer of complex, compositional, 
and often emergent behaviors that are observed at the user level. It includes the ability 
to write a thematic essay, generate a novel and insightful analogy, perform multi-step 
chain-of-thought reasoning in a new domain, or synthesize disparate concepts into a 
coherent narrative.11 This is the "application software" level, where the model's most 
impressive—and most dangerous—capabilities reside. 

 
Assigning "Known" Percentages to Each Layer 

 



Based on the analysis throughout this paper, we can assign a rough percentage of "known" 
versus "unknown" to each of these layers. 

● Layer 1 (Mechanics): 100% Known. There is no mystery at this level. These systems 
were designed and built by humans. Every mathematical operation is precisely specified 
and fully understood.4 The architecture is transparent, and the flow of computation is 
deterministic (for a given set of weights and a sampling temperature of zero). 

● Layer 2 (Circuits): 1-5% Known. While the field of mechanistic interpretability has 
made important progress, it is still in its infancy. Researchers have successfully 
reverse-engineered a handful of simple circuits in models like GPT-2 Small.64 However, 
these identified circuits represent a minuscule fraction of the model's total 
computational graph. The vast majority of the trillions of possible pathways and 
interactions within a state-of-the-art model remain unmapped and uncharacterized. 
The fundamental challenges of polysemanticity and superposition mean that even the 
circuits we do find are not cleanly isolated, making scalable analysis extremely difficult.2 
This estimate reflects that we have a proof-of-concept for interpretation, but it is 
nowhere near a comprehensive understanding. 

● Layer 3 (Reasoning): <1% Known. At this highest level of abstraction, our 
understanding is almost entirely descriptive and correlational, not mechanistic. We can 
prompt the model to exhibit chain-of-thought reasoning, but we cannot trace the 
specific neural pathway that produced a particular logical step.6 We can observe 
in-context learning, but we do not have a complete mechanistic theory for how the 
attention mechanism identifies and applies the latent task. When an LLM generates a 
creative metaphor or a piece of insightful analysis, we have virtually no ability to explain 
how that specific combination of concepts was constructed from the underlying 
circuits. This layer is the very heart of the black box. 

 
Final Calculation and Justification 

 
The final estimate of the black box percentage cannot be a simple average of the three layers. 
The argument of this paper is that the vast majority of what we care about when we talk about 
an LLM's "behavior," "intelligence," or "risk" resides in Layer 3. The low-level mechanics are 
merely the substrate; the emergent, high-level reasoning is where the model's utility and its 
potential for harm are realized. Therefore, the degree to which the overall system is a black 
box must be weighted heavily toward our profound ignorance of this top layer. 
Given that our mechanistic understanding of Layer 3 is effectively zero, and our understanding 
of Layer 2 is nascent and covers only a tiny fraction of the model's functions, a reasoned 
estimate is that 95-99% of a state-of-the-art LLM's complex, goal-oriented behavior is 
mechanistically a black box. We understand the physics of the silicon transistors, but we 
cannot read the complex software they are collectively executing. 
This conclusion has a striking parallel in the study of the human brain. We have a detailed 
understanding of the mechanics of individual neurons (the brain's Layer 1) and have identified 



some simple neural circuits (Layer 2), but we have very little understanding of how these 
components give rise to high-level cognition like abstract thought, creativity, or 
consciousness (Layer 3). The LLM black box problem, therefore, is not just a temporary 
engineering challenge. It is a concrete, externalized, and silicon-based instantiation of the 
ancient mind-body problem. The 95-99% figure is a quantitative measure of the "explanatory 
gap" for this new class of artificial minds, a stark metric of the chasm between what we have 
built and what we understand. 
 

Conclusion and Future Directions 
 
This paper has charted the landscape of knowledge surrounding Large Language Models, 
journeying from the fully known architectural blueprints to the profoundly unknown internal 
mechanisms and the philosophically unknowable questions of consciousness. The analysis 
reveals a stark paradox: LLMs are among the most complex and capable systems ever 
engineered, yet their high-level cognitive behaviors are almost entirely opaque to their 
creators. We have established that while the low-level mechanics of an LLM are 100% known, 
the mid-level circuits that perform discrete sub-tasks are perhaps 1-5% understood, and the 
high-level abstract reasoning that constitutes their most impressive feats is mechanistically a 
near-total mystery. 
This synthesis leads to the central conclusion of this report: a reasoned estimate that 95-99% 
of an LLM's complex, task-oriented behavior remains a black box. This figure is not 
intended as a definitive measurement but as a stark illustration of the vast chasm between our 
ability to build these models through scaled-up, data-driven optimization and our ability to 
understand their internal logic through scientific analysis. The very properties that make them 
powerful—their scale, complexity, and the hyper-efficient, non-human-like representations 
they learn—are the same properties that make them inscrutable. 
This profound knowledge gap has critical implications for the future of artificial intelligence. 
Deploying systems that are 99% black box in high-stakes, safety-critical domains such as 
medicine, finance, law, and autonomous systems constitutes a significant and poorly 
quantified risk.7 Without transparency, we cannot fully audit for bias, guarantee reliability, 
verify factual claims, or ensure alignment with human values. The phenomenon of 
confabulation and the potential for unpredictable emergent abilities underscore the fragility of 
our control over these systems. 
In light of these findings, the path forward for AI research must undergo a significant 
reorientation. Progress can no longer be measured solely by performance on capability 
benchmarks. The field must elevate transparency, reliability, and safety to co-equal status 
with performance. This necessitates a concerted effort in several key areas: 

1. A Massive Investment in Mechanistic Interpretability: The nascent field of MI must 
be scaled dramatically. We need better tools to automate circuit discovery, to 
disentangle polysemantic and superimposed representations, and to make these 
techniques applicable to frontier-scale models. This is a grand scientific challenge on 



par with mapping the human brain. 
2. The Development of Interpretable-by-Design Architectures: Alongside 

reverse-engineering existing models, research should explore novel architectures that 
are inherently more transparent, even if it comes at a cost to performance. A slightly 
less capable model that we can understand and trust is far more valuable in many 
real-world applications than a more powerful one that is completely opaque. 

3. A Paradigm Shift in Evaluation: The community must move beyond benchmarks that 
only measure task success. Future evaluations must incorporate metrics for robustness, 
factuality, and interpretability. We need standardized methods for assessing a model's 
tendency to confabulate and for stress-testing its alignment under adversarial 
conditions. 

The era of Large Language Models has presented humanity with a powerful but deeply alien 
form of intelligence. We have succeeded in creating systems that can talk like us, reason like 
us, and create like us, but we do not know how. Closing the 99% gap in our understanding is 
not merely an academic exercise; it is one of the most pressing scientific and safety 
challenges of the 21st century. 
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